
So�ware Development (cs2500)

Lecture 53: Tail Recursion and Search

M.R.C. van Dongen

March 4, 2011

Contents
1 Outline 1

2 Tail Recursion 2

3 Search 4

4 Linear Search 5

5 Binary Search 6

6 Analysis 7

7 Improvements 8
7.1 Sorted Keys . 8

7.2 Sentinel . 9

7.3 Final Improvement . 10

8 ForMonday 11

9 Bibliography 12

1 Outline
�is lecture is about tail recursion and search.

Tail recursive algorithms are an important class of algorithms. �ey are recursive, but at a very shallow

level. �ey are “almost” iterative. �is allows us to automatically translate them into iterative algorithms.

�e advantage of doing this is that it improves the performance.

Linear search outperforms binary search for small input sizes. It is an important requirement for the

e�cient implementation of many algorithms. Any further improvement to linear search will therefore

1

also improve these other algorithms. We shall study a number of ideas to improve the performance of

linear search. �ese ideas can also be used for other algorithms. �e part about linear search is partially

based on [Knuth, 1998, Chapter 6.1].

Many of the code transformations are improvements which are carried out by a compiler. �e result

of the transformations will usually violate our coding conventions. To keep things simple we shall not

bother about this most of the times.

2 Tail Recursion
Recursive algorithms are elegant and their correctness/termination properties are usually easy to prove.

However, they have the disadvantage of having method call “overhead.” To overcome this problem of

overhead, programmers frequently �rst implement a recursive algorithm and (if possible) transform it to

a more e�cient non-recursive (iterative) algorithm.

A Java method is called tail recursive if (during its current invocation) any recursive call is immediately

followed by a the return of the current invocation. Modern compilers are able to automatically transform

any tail recursive method to an equivalent iterative method.

To study tail recursion we shall use the Fibonacci number sequence. �e following are the Fibonacci

numbers:

1 ,1 ,2 ,3 ,5 ,8 ,13 ,

Except for the �rst two numbers, each number is the sum of its two predecessors. Writing fn for the

n-th Fibonacci number we have

fn =

(

1 if n ≤ 1 ;

fn−1+ fn−2 otherwise .

�e following method computes the n-th Fibonacci number.

public static int
int f(int n) {

if (n <= 1) {
return 1;

} else {
return f(n - 1) + f(n - 2);

}
}

Java

�e method is not tail recursive because there is an addition and a call to f(n - 2) a�er the call to

f(n - 1).

�e previous method for Fibonacci numbers is hopelessly ine�cient. �e reason for the ine�ciency

is that the number of method calls that are required to compute fn−2 is almost twice the number of calls

for that are required to compute fn−1. As a consequence, the number of calls for fn is in O (2n). Figure 1

graphically shows this e�ect for n ≤ 6.

When humans compute Fibonacci numbers they don’t use the top-down recursion. Instead they

2

f6

f5

f4

f3

f2

f1 f0

f1

f2

f1 f0

f3

f2

f1 f0

f1

f4

f3

f2

f1 f0

f1

f2

f1 f0

Figure 1: Fibonacci tree of order 6. �e root at the top represents the computation of f6.

enumerate the following sequence:

〈 f0, f1 〉 , 〈 f1, f2 〉 , 〈 f2, f3 〉 , . . . ,

fn−1, fn

�

︸ ︷︷ ︸

length n

,

and return fn .�ere’s no need to explicitly construct pairs

fi , fi+2

�

. In terms of recursion we can do

this as follows:

fn =

(

1 if n = 0 ;

F(1,1,1, n) otherwise ,

where F(fi−1, fi , i , n) is given by:

F(fi−1, fi , i , n) =

(

fi if i = n ;

F(fi , fi + fi−1, i + 1, n) otherwise .

�e following implements F in Java.

public static int
int F(int fibPrev, int fibCurr, int curr, int n) {

if (curr == n) {
return fibCurr;

} else {
return F(fibCurr, fibPrev + fibCurr, curr + 1, n);

}
}

Java

�is de�nition is tail recursive. A clever Java compiler may translate the tail recursive de�nition of F
to:

3

public static int
int F(int fibPrev, int fibCurr, int curr, int n) {

while (curr != n) {
int fibPrevOld = fibPrev;
int fibCurrOld = fibCurr;
fibPrev = fibCurrOld;
fibCurr = fibCurrOld + fibCurrOld;
curr ++;

}
return fibCurr;

}

Java

To see that this works, let’s trace the body of the while loop for n == 6. Table 1 depicts the trace.

Now the computation of Fn requires n iterations of the while loop in F.

fibPrev fibCurr curr

1 1 1
1 2 2
2 3 3
3 5 4
5 8 5
8 13 6

Table 1: Trace of while loop of the method F for n == 6.

3 Search
In the remainder of these notes we shall study some more examples of tail-recursive methods. Each is

based on the notion of search:

GIVEN: A key k and a collection of items.

TASK: Look up item with key k .

Examples:

• Given the name of a person, look up their phone number.

• Look up the meaning of the French word “entrepreneur” in a French to English dictionary.

• Enter a customer’s account number in to the computer application and look up the balance of their

current account.

It may not always be true that such queries result in a success:

• A person’s phone number may not be listed.

• A word may not be listed in the dictionary.

4

• An account number may be invalid because of a typo.

• ….

In the remainder of the lecture we shall study some search algorithms. To simplify things we shall

assume that we are given an array with keys and have to look up a given key. �e type of our key is int.

For simplicity we shall compare ints using the usual order.

4 Linear Search
Our �rst search problem is as follows.

GIVEN: unordered array, keys, of keys.

QUESTION: Does keys contain key, and if so at which position?

�is problem is best solved using linear search which roughly boils down to seeking for key in keys from

“le� to right”:

1. If there are no more keys then key is not in keys.

2. Otherwise, if the key is not equal to key then search for key in the remaining keys.

3. Otherwise key is in keys at the current position.

�e following is a tail-recursive method implementing linear search.

/**
* Linear search algorithm for deciding if keys[lo..hi] contains key.
* ASSUMPTION: lo <= hi + 1.
**/

public static
int linSearch(int[] keys, int key, int lo, int hi) {

if (lo > hi) {
// There are no more keys left.
return -1;

} else if (keys[lo] != key) {
// Search for key in remaining keys.
return linSearch(keys, key, lo + 1, hi);

} else {
// We’ve located key.
return lo;

}
}

Java

�e following is an iterative version of the linear search algorithm.

5

public static
int linSearch(int[] keys, int key, int lo, int hi) {

while (true) {
if (lo > hi) {

return -1;
} else if (keys[lo] != key) {

lo = lo + 1;
} else {

return lo;
}

}
}

Java

Notice that the previous algorithm was obtained automatically from the tail-recursive de�nition. �e

resulting method is not particularly neat and it would not be wise to submit something like this for an

assignment. For example, there are two return statements (exit points) in the method’s body and a good

algorithm should always have a single exit point.

5 Binary Search
Our second problem is as follows:

GIVEN: An array, keys, of (distinct) keys which are ordered in strictly ascending order. We are aslo

given the index, lo, of the �rst key and the index, hi, of the last key.

QUESTION: Does keys contain a given key, key, and if so at which position?

Humans usually solve this problem using binary search.

To look up word word in keys[lo..hi], the binary search algorithm proceeds as follows:

1. If hi < lo then key is not in keys.

2. Else assign (lo + hi) / 2 to mid. �is splits keys into three parts:

(I) Keys before position mid. �ese keys are in keys[lo..mid - 1].

(II) Keys a�er position mid. �ese keys are in keys[mid + 1..hi].

(III) Key keys[mid].

Note that (I) and (II) are about half the size of keys[lo..hi].

3. �ere are three possibilities:

(I) If keys[mid] > key then search for key in keys[lo..mid - 1].

(II) Else if keys[mid] < key then search for key in keys[mid + 1..hi].

(III) Else key is in keys at position mid.

6

�e following tail recursive method implements the binary search algorithm.

public static
int binSearch(int[] keys, int key, int lo, int hi) {

if (lo > hi) {
return -1;

} else { // key is in keys[lo..hi]
int mid = (lo + hi) / 2;

if (key < keys[mid]) {
return binSearch(keys, key, lo, mid - 1);

} else if (key > keys[mid]) {
return binSearch(keys, key, mid + 1, hi);

} else {
return mid;

}
}

}

Java

Exercise. Transform the recursive method for binary search to an iterative version.

6 Analysis
It is instructive to analyse the average running time of our iterative linear and binary search algorithms.

We shall measure the running time indirectly by estimating the number of iterations of the algorithms

for a random array keys of size n and a random key.

We shall �rst estimate the average running time of linear search. �ere are two cases to consider:

1. key is not in keys: We have to carry out the statements in the body of the while statement for each

of the n keys.

2. key is in keys: It is reasonable to assume that key is “random” in the sense that it should be equally

likely that key == keys[i] for all index position i . �en the probability that key == keys[i]
is 1/n. Given this probability the expected number of iterations is given by

1

n

n
∑

i=1

i = (n+ 1)/2 .

Our analysis gives us the worst-case running time for free:

�eorem. �e worst-case running time of linear search is O (n).

We shall now analyse the worst-case time complexity of binary search.

7

As we’ve seen, the algorithm reduces the number of relevant index positions by a factor of two in

each iterations. For such algorithms it is useful to assume that the input size is proportional to some

(discrete) power of 2. To this end, let’s assume that n = 2s
, for some integer s .

Next we consider the relationship between the i -th iteration and the number of keys le� during the

i -th iteration. Table 2 depicts this relationship. �is gives us the following result: �ere are at most s , i.e.

number of iteration 1 2 3 … s

number of keys le� never exceeds 2s 2s−1 2s−2
… 1

Table 2: Relationship between iteration and the maximum possible number of relevant keys in keys.

log2(n) iterations. �erefore the worst-case running time of binary search is O (log(n)).
�e average running time can only be better! (But not much.)

Using the Big-Oh notation we may now express the worst-case time complexity of linear search as

follows.

�eorem. �e worst-case time complexity of binary search is O (log n).

7 Further Improvements to Linear Search
In our analysis we assumed that the time complexity only depends on the number of comparisons. �is

is a reasonable assumption if the number of keys, n, is large. However, it is not a reasonable assumption

if n is small: an important case for many search applications. For example, it has been observed that

linear search algorithm may outperform the binary search algorithm if n is small.

In the remainder of these notes we shall study some clever transformations which improve the linear

search algorithm.

7.1 Sorted Keys
If the keys are sorted then the performance of the linear search algorithm may be improved. �e

following is an iterative implementation of linear search for sorted keys. �e members of keys are sorted

in non-decreasing order.

8

/**
* Improved linear search algorithm.
* The keys are sorted from small to large.
**/

public static
int linSearch(int[] keys, int key, int lo, int hi) {

while (lo <= hi) {
if (keys[lo] < key) {

lo = lo + 1;
} else if (keys[lo] > key) {

return -1;
} else {

return lo;
}

}
return -1;

}

Java

We exploit the fact that the keys are ordered. �erefore, if keys[lo] > key then keys[i] > key
for any remaining i in lo+1–hi.

7.2 Sentinel
Before implementing the next improvement, we need to tidy up our previous algorithm. �e reason

for doing this is that there is a return inside the while loop. Some people argue that this is not a good

idea. For example, several return statements makes it more di�cult to understand the algorithm. �e

following code fragment is equivalent to the previous algorithm (prove this) but it has the advantage

that the algorithm has only one entry and one exit point.

public static
int linSearch(int[] keys, int key, int lo, int hi) {

int cmp = -1;

while ((lo <= hi) && (cmp < 0)) {
cmp = (keys[lo] < key ? -1

: keys[lo] > key ? 1 : 0);
if (cmp < 0) {

lo = lo + 1;
}

}
return (cmp != 0 ? -1 : lo);

}

Java

Our second improvement is more subtle. �is improvement works if comparing keys is relatively

9

cheap and if we have a special key, KEY, which is larger than any other (allowed) key. If we have such key

then we can eliminate the check (lo <= hi).

As with the previous case we sort the keys from small to large. However, this time we put KEY
immediately a�er the last key in keys. �en, when looking for a key key which is not in keys[lo..hi
], we will eventually run into the key KEY and then KEY > key, which proves that key is not in keys[
lo..hi+1]. What is more, the comparison KEY > key may be implemented as key[lo] > key, which

is just the same as before. E�ectively, this merges the termination condition for the case where key is not

in keys with the termination condition for the case where key is in keys.

Compared to the previous algorithm we save one comparison in every iteration at the expense of

having one more comparison if key is larger than the last member in keys. In addition there is no longer

any need to pass the parameter hi.

�e following is the improved algorithm. �e variable lo has been renamed to position. Note that

an ideal candidate for the sentinel s in the algorithm is the largest possible int is Integer.MAX_VALUE.

/**
* Linear search with sentinel, s, at end of keys. The
* keys are sorted from small to large. The sentinel
* has the property that s > k for any valid key k.
**/

public static
int linSearch(int[] keys, int key, int position) {

int cmp = -1;

while (cmp < 0) {
cmp = (keys[position] < key ? -1

: keys[position] > key ? 1 : 0);
if (cmp < 0) {

position = position + 1;
}

}
return (cmp != 0 ? -1 : position);

}

Java

7.3 Final Improvement
Our �nal improvement is to increment position regardless of the value of cmp. Compared to the

previous implementation it saves one comparison in every iteration, but if key is in keys then position
will be the successor of the position of key in keys. If we return position - 1 in this case then the result

is still correct.

10

/**
* Linear search with sentinel, s, at end of keys. The
* keys are sorted from small to large. The sentinel
* has the property that s > k for any valid key k.
**/

public static
int linSearch(int[] keys, int key, int position) {

int cmp = -1;

while (cmp < 0) {
cmp = (keys[position] < key ? -1

: keys[position] > key ? 1 : 0);
position ++;

}
return (cmp != 0 ? -1 : position - 1);

}

Java

Using the do-while construct we may avoid the initial assignment of -1 to cmp.

/**
* Linear search with sentinel, s, at end of keys. The
* keys are sorted from small to large. The sentinel
* has the property that s > k for any valid key k.
**/

public static
int linSearch(int[] keys, int key, int position) {

int cmp;

do {
cmp = (keys[position] < key ? -1

: keys[position] > key ? 1 : 0);
position ++;

} while (cmp < 0);
return (cmp != 0 ? -1 : position - 1);

}

Java

8 ForMonday
• Study the lecture notes.

• Translate the tail recursive version of binSearch to an iterative version.

11

9 Bibliography

References
[Knuth, 1998] D.E. Knuth. �eArt of Computer Programming, volume 3: Sorting and Searching, second

edition. Addison–Wesley, 1998.

12

	Outline
	Tail Recursion
	Search
	Linear Search
	Binary Search
	Analysis
	Improvements
	Sorted Keys
	Sentinel
	Final Improvement

	For Monday
	Bibliography

